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FOREWORD 

This is the second in a series of reports on high-speed 
tensile-impact work performed in the Pioneering Research 
Laboratory of NLABS.    The first report (NLABS Tech. Rept 
69-18- PR) appeared over 5 years ago.   It had been planned to 
publish all three of the projected reports at that time, but for 
various reasons the second and third reports were delayed. 

The first report dealt with the basic mathematical 
techniques and their application to a linear material.    The 
present report deals with non-linear materials which do not 
exhibit creep or other time dependence.    The third report is 
planned to deal with non-linear materials that do exhibit creep. 
Since all actual materials exhibit creep it is only in the third 
report that we can hope to demonstrate good agreement between 
theory and experiment. 

Body armor must be resistant to high-speed impact in 
order to stop projectiles and shell fragments.    Parachute straps 
are subjected to sudden tensile strains when the parachute opens 
and the failing load is suddenly decelerated.    The mathematical 
techniques described in the present paper should be useful in 
finding out more about how materials fail under rapid impact. 
With this knowledge, better materials can almost certainly be 
developed; 
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NOMENCLATURE 

A      = cross-section area of unstretched sample. 

A..   = first time-integral of the repetitive process, correspond- 
ing to the lattice point in the i     column and the j     row. 

&n a2, a3, a4 = constants in a trigometric expression. 

B.. s second time-integral of repetitive process. 

c = velocity of propagation of strain waves. 

c = propagation velocity at zero strain. 

E = modulus of elasticity at zero strain. 

Ex = coefficient in the expression for <r . 

£ = energy imparted to the string in time t. 

F = force acting on mass m within surface S. 

f(x) = function giving the initial displacement of each particle 
in a string; also (in Appendix I) an arbitrarily specified 
initial strain. 

g(x)= function giving the initial velocity of each particle in a 
string. 

g       = g/ cv  ; the bar is dropped after the quantity is introduced. 
° th 

L       = input for the k     step of the repetitive process. 

i        = subscript indicating the column number of a lattice point; 
also an index in the slack-cord model. 

th 
J       = output of the k     step of the repetitive process. 

j = subscript indicating the row number of a lattice point. 

K = spring constant of all springs joining the discrete masses. 

k = a repetition index (superscript) in the repetitive process. 

L = length of unstretched sample. 

M     = mass of each discrete mass; also, the momentum contained 
within an arbitrary region. 

m     = mass contained by surface S, and experiencing force F. 
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n      = number of lattice-point intervals in the length L; also 
the number of discrete masses in the slack-cord model. 

R      = (c/c  ) » a given function of the strain e. 

S      9 surface containing mass m for which the momentum 
theorem is derived, 

s       = displacement of a particle of material from its un- 
stretched position x, also see 5. 

I = s/Lv0; the bar is dropped after the quantity is introduced. 

Sj, = total stretch in the transition region. 

T -■ kinetic energy per unit length of string. 

t = time, also seel. 

t a tc/L; the bar is dropped after the quantity is introduced. 

v = velocity of a particle of sample. 

x      = distance of a particle of material from the fixed (left) end 
of the sample, in the unstretched state, also see x. 

x      = x/L; the bar is dropped after the quantity is introduced. 
th 

y.      = amplitude of vibration of the i     discrete mass. 

a       = the first of two weighting factors used to speed up 
convergence, also the quantity defined by eq (82). 

ß       = the second of two weighting factors used to speed up 
convergence;    a+ß = 1, 

7 = phase angle in slack-cord model or continuous system. 

e = normal strain along axis of string,  = 3s/3x. 

X. = wave length of assumed wave in a continuous medium. 

<a = density of unstretched material. 

<r = normal stress along axis of string. 

£ = potential energy per unit length of string. 

^ = function of t in the continuous system. 

fl 2TT/\ 

W = angular frequency in the discrete-mass problem. 
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ABSTRACT 

An integral-equation, successive-substitution solution 
for the propagation of strain waves in a linear elastic material, 
developed in an earlier paper, is here extended to non-linear 
materials without creep (time-independent materials).   A 
previously-published problem, based on experimental data for 
nylon string is solved by the successive-substitution method and 
compared with the earlier solution obtained by the method of 
characteristics.    The agreement of the two solutions is at first 
good, but in the region where the stress-strain curve of the 
nylon is concave upward a tendency to oscillation builds up and 
the solution eventually oscillates.    This occurs in approximately 
the same region where shock waves can appear in a method-of- 
characteristics solution.    Oscillations in the strained portion of 
a string are examined theoretically and it is shown that the energy 
of standing waves can be used to obtain energy conservation. 
Although the successive-substitution method generates oscillations 
when it has to deal with a discontinuity in strain, the possibility 
that oscillations also actually exist as a means of conserving 
energy cannot be ruled out. 
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1. Introduction 

The present report is the second in a series of 
three that describe the results of mathematical and experimental 
investigations of the response of polymers to tensile impact. 
Professor Crout is responsible for the mathematical develop- 
ments and Mr.  Pilsworth is responsible for the experimental data. 
The situation when the work was undertaken and the reasons for 
adopting the present approach are discussed at length in the first 
report [ l]  (subsequently referred to as Report I) of this series 
and will be only briefly summarized here. 

In Report I the mathematical method was developed and 
was applied to the problem of strain propagation in a linear 
material having no creep or other time dependence.    Since the 
solution of this problem is known, and since the new method gives 
the correct solution, its validity for this case has been established, 
and by inference the new method can also be expected to give 
correct answers to related problems for which satisfactory solutions 
have not been available. 

The present report extends the mathematical analysis to 
include non-linear, time-independent materials and in the third 
report non-linear, time-dependent materials will be treated.    The 
subject of the present report (non-linear, time-independent materials) 
has been treated by the method of characteristics by Von Karman and 
Duwez [2], by G.  I.  Taylor [3], and by Rachmatulin [4],   Hence the 
mathematical results of the present report are not presented as a 
new solution but rather as a new method of obtaining a known solution 
and as the next logical step toward solving the problem of strain 
propagation in a non-linear, time-dependent material.    Since the 
present method furnishes an alternative to the method of character- 
istics, a comparison of the results obtained in solving a particular 
problem by the two methods is given. 

2. Summary of Report I 
A satisfactory theory of the response of materials to loading 

(tensile impact) should permit us to calculate the stresses and strains 
in a material, for any rate of loading, from a few fixed properties or 
parameters of the material.    There is no satisfactory theory that will 
do this.    Linear viscoelastic theory is adequate for small strains but 
not for large strains.    Stress-strain curves plus creep or relaxation 



data are satisfactory for large or small strains,  if the strain 
rate is very low.    The method of characteristics is adequate for 
non-linear time-independent materials, but as has been shown 
by Pilsworth and Hoge [5], by Pilsworth [ 6], and by Smith and 
Fenstermaker [7] it is inadequate for materials such as Nylon 
and rubber. 

in Report I a new method of handling the problem of 
strain-wave propagation was developed, in which the relevant 
partial differential equations are transformed into integral 
equations.    The integral equations are then solved by the method 
of successive substitutions.    Referring to the system shown in 
Fig.   1, the differential equation 

—    -   r* ^- Ml 

was derived {£$     strain propagation.    Here x is the position of 
a particle of material in the unstrained state,  s is the displace- 
ment of the same particle from its original position, and c is the 
wave velocity.    Other quantities are defined in the table of 
nomenclature.    By integrating eq (1) twice, the equation 

+  -.Hi) + t | (TO    t  ^J ^cLtdf (2) 

was obtained; this equation is valid when c is constant (a linear 
material has c constant).    The function f (x) specifies the initial 
displacements and g(x) specifies the initial velocities; except 
at the impacted end of the string these functions are usually zero 
in practical problems. 

Equation (2) was simplified by putting f and g = o and 
introducing three new normalized variables: 

* = T^Fo>    * '- "C '    * '   L (3) 

in which v   is the velocity of the impacted end of the string, 
o 



1; L H 

Fig. 1  String subjected to tensile impact. 



The result of these substitutions (see Report I, p 36) was to 
reduce eq (2) to the form 

" "- L l*fr*& (4) 

where for convenience the bars have been dropped from the new 
variables.    The velocity c does not appear in eq (4);   this equation 
refers,  in fact, to the problem in which L ■ 1, c = 1, and v = 1. 
When a solution of eq (4) has been obtained, the results can be 
applied to actual problems by using eq (3).    The method devised 
for evaluating this integral was to accept a lattice of points in the 
(x, t) plane, to specify the values of s along three borders of this 
lattice,  and to find the values of s at the remaining points by an 
iterative procedure based on eq (4).    To find values of the inte- 
grand the three-point differentiation formula was used, and for the 
integration the trapezoidal formula was adopted.    Values of s were 
calculated one row (one value of t) at a time by iteration, using the 
values of the previous row as starting values.    When the specified 
degree of convergence had been reached, the next row of values 
was calculated« 

It was demonstrated that convergence was much 
accelerated by modifying the successive substitution process.    The 
modification adopted was to multiply the output of the k th iteration 
by 0. 7 and the input by 0. 3, and add the two products to obtain the 
input for the next iteration.    The weighting factors 0. 7 and 0. 3 
appeared to be near the optimum for general use but do not 
necessarily give the most rapid convergence under all circumstances. 
It was shown that the use of weighting factors affects only the rate of 
convergence, not the final result. 

Two linear, time-independent problems were solved 
by digital computer, using the method« summarized above, and 
the results have been given in Report I.    In the first problem the 
end of the string is set in motionwilh its full velocity vQ at t = o; 
in the second the velocity rises linearly during a finite time interval 
beginning at t = o.    Since the exact solution of eq (4) is known, the 
results obtained by the iterative process could be checked by compari- 
son.    For the case of a discontinuous rise in velocity (infinite 
acceleration at t = o) the values of s found by iteration were found to 



agree quite well with the exact solutions, but when values of the 
strain e    (= &s/ä x) from the iterative solution were compared 
with the exact"values it was found that the iterative values oscillated 
above and below the exact values, when plotted versus x.    The 
oscillations were also present in the values of s, of course, but 
were very much less noticeable in s than in 3 s/3x.    The oscillations 
were largest at the values of x nearest to the discontinuity of the 
exact solution.    It is clear that the iterative process cannot give 
results that reproduce a discontinuity exactly.    This had been 
anticipated.    In adjusting to the discontinuity the iterative results 
were found to be first too low,  then too high,  and so on, but as the 
discontinuity (wave front) traveled away from any particular point, 
the amplitude of the oscillations near that point was found to decrease. 

The case of a continuous rise in velocity (finite 
acceleration) was treated because it corresponds more nearly to 
the situation in actual experiments,   and because it was expected 
that the iterative solution could follow the exact solution in this case 
with less tendency to be thrown into oscillation than in the case of 
infinite acceleration.    The results justified this expectation.    Figure 
2, reproduced from Report I,  shows the strains calculated from the 
exact solution (solid line) and from the iterative solution (dots) 
when the velocity of the impacted end of the string rises linearly from 
0 to v   as t increases from 0 to 0. 5.    (Since the t used in the calcula- p v 

tions is the normalized variable, t = 0. 5 is the time at which the lead- 
ing edge of the strain wave has reached the middle of the string. ) 
The oscillations of the solution obtained by the successive-substitution 
method are noticeable but not large. 

It is important that oscillations caused by discontinuities 
should not destroy the validity of the successive-substitution method. 
Hence the effect of other factors on the oscillations due to discon- 
tinuities was examined.    Since the eventual object of the present work 
is to be able to calculate the behavior of a non-linear, time-dependent 
material, the effect of non-linearity was considered.    When the stress- 
strain curve is concave downward, the slope of a strain wave 
decreases in steepness, and hence the tendency toward oscillations is 
reduced; but when the curve is concave upward the strain wave 
increases in steepness so that there is a possibility that a shock wave 
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will form.   Since a shock wave is a discontinuity it will increase 
the tendency toward oscillations in the iterative solution.    Time- 
dependence of the material will tend to delay a part of the response 
and hence will tend to destroy discontinuities and reduce the tendency 
toward oscillations.    The conclusion reached in Report I was that 
the modified successive substitution procedure was satisfactory; and 
that the oscillations relative to the exact solution could be trouble- 
some but would probably not be serious,  except possibly where the 
stress-strain curve was concave upward and shock waves were 
mathematically predicted. 

3.    Extension of the Solution to the Non-Linear Case. 

The strain at any point in the string is   e = 0s/ox. 
In the non-linear case 

cr -- <r(0 ) (5) 

and Newton's law yields the differential equation 

The integral equation is 

(6) 

where 

Since 

ig = <rte£"-V<)3& (9) 

and since the wave velocity c is 

/C - n/—;s—  * (10) 



it follows that (7) may be written 

It should be noted that c is now a function of £   , which is 
8 s/3x.    Let us place 

Ä0        ?        * f -  *•**       Zfr) -    Sty 

where 

]f~T" ' 
which is the wave velocity for zero strain. 

Substituting in (11) we obtain 

°      -o -o 

or 

(13) 

i-*-M-f*^r/>JM*'     (14) 

,icM> =i §c*) +fj^i^jiM.   (15) 

In the present case 

it being noted that this relation applies at the right end (no 
discontinuity in velocity). 

8 

(16) 



Equation (15) thus reduces to 

C*>i>--J !$&<*»■ <17) .4. „ 

^6      'O 

Here c is a function of £ ; however, it follows from (12) that 

c        a*   -   L   **   ' "^ " fc   > (18) 
hence 

C(€)= £.<£)  --^(-|~j. (19) 

It is now evident that the technique involved in the present report 
differs from that in Report I only in that the factor (c/c   )z must 
be included in the integrand. 

Finally we note that in addition to (16) we have 

A(X,0V   O 0^ * ^ / I (20) 

also in regard to velocity 

/U---^-- — T3T '^"535 =^o^- (21) 

4.    Description of the Repetitive Process When Applied to the 
Non-Linear String. 

The following set of instructions for programming the 
successive repetition process for use in connection with a digital 



computer was devised.   A new quantity 

not used in Report I is needed.    The weight factors a = . 3, ß = .7, 
as described in Report I, p 51, are again used. 

Our problem is to determine the values of the quantity 
s.. at the points of the square lattice shown in Fig.  3.    The index i 
takes the values 0,  1, 2, 3, ..., n; and j takes the values 0,  1, 2, 
3, . ..    .    Since n is given, the range of values taken by i is bounded. 
The range of values taken by j, however, has no upper bound except 
one which will be assigned later from practical considerations. 

The values of sj- are given for those points which lie 
on the border, thus 

-Vi - ° ^0,1,1,3 ... ■; 
(23) 

4.-JUU  <*1A)£S*O       j   z Ö, 1,2,1   . •• . 

The values of s.. at the other points are determined a 
row at a time — that is for     j   fixed and i = 1,2, 3,..., (n-1). 
The values of j are taken in the order 1,2, 3... .  In view of this 
it will evidently be sufficient to describe how to obtain the values 
of s.. for the j      row when the values for all of the preceding rows 
are    known. 

The values of s.. for the j     row are obtained as the 
limits gotten, respectively, by applying repeatedly a process 
shortly to be described.   At the beginning of the k     repetition we 
have the quantities 

. ■«*)   , (A)    (A) a> 
+*    >   **4     >   \       ••   ,   ^,-(,i      , (24) 

as approximations to the quantities 

10 
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(25) 

respectively.    Here k Is a superscript, not an exponent.    When 
the process is applied starting with the quantities (24), the 
quantities 

i*»D     a+0     <AH) (4 (26) 
I* )       AJ J 

are obtained as approximations to (25), respectively.    The 
sequence of repetitions is started by taking the values of s.. 
for the (j-1)      row as approximations to the values for the 
j     row, respectively, thus 

These values are, of course, known.    The sequence of 
repetitions is terminated when, for sufficiently large k, the 
output (26) duplicates the input (24) to the required accuracy. 
The common values which then compose (24) and (26) are 
taken as the final result (25).    The values of s>- which compose 
the j      row are thus determined. 

Finally we shall describe the process by which 
we start with (24) and obtain (26).    During the course of the 
calculations we compute and record, in addition to the quantities 
s--, the auxiliary quantities e^-, R--, A^-, and B...    The quantity 

J J J J J 
A is a measure of the first time integral and the   quantity B of 
the second time integral.    Both A and B differ somewhat from 
the corresponding quantities in Report I because they contain R, 
which was not used in Report I»    The four auxiliary quantities 
do not exist at the points of the left border of the lattice, for 
which i = 0, or the right border, for which i = n.   Along the 
lower border, where j = 0, £.., A.., and B-• are defined to be 
zero, and R^ to be unity.   As is the case with sjj the auxiliary 

12 



quantities £.., R.., A.., and B.. are obtained one row at a time, 
are known in the first (j-1) rows, and are obtained in the i .   row 
as the limits approached by the quantities cA    i R.\     , A!*', B}.k', 
respectively, during the course of the successive repetitions. 
The desired basic process is now described by the relations 

^4 rTV^4,»i "■+''**)>     •****' X> " 'J G*-0   (28) 

R?    -     R<«ft>, i,»'**,   -'\>   C*-0    (29) 

-4»ij     =    . 3 A*j       + . (    Cj-j'   5     >C *   /, A9 ...j (/H-l)(32) 

(k) Starting with the given quantities s..    , j being fixed and i 
taking the values 1,2,  ...,   (n-1),    we compute the quantities 
€\.     using (28); then the quantities R(k'   using (29).    The 
function R (e) is given, it is 

and is expressed in a form which is convenient for machine 
calculation— an algebraic polynomial for example.   After R 
has been calculated or otherwise found, the quantities A>. ' are 
computed using (30); then the quantities B>. ' using (31 J"» and 
finally the quantities s(. + ) using (32).    This process is now 
repeated,  and so on. 

13 



5.   Results of Digital Computer Calculations for a Non-Linear 
Model 

Experimental measurements, made on Nylon by 
Pilsworth, have been previously published [5, 6],    Some of 
the published data had been analyzed by the method of 
characteristics, and it was decided that the results of this 
analysis would be convenient for comparison with results 
obtained by the present method of successive substitutions.    In 
the earlier investigation,  several different stress-strain curves 
were used for method-of-characteristics calculations; the curve 
that gave the best results is shown in Fig.  4.    It was decided to 
use this curve as the basis of the comparison. 

Table 1 contains the values read from the curve. 
For reasons to be discussed later it was impossible to use the 
iterative procedure with these stress-strain values at the highest 
strains, and in order to obtain an iterative solution at the highest 
strains the upper part of the stress-strain curve was simply 
replaced by a straight line.    This line is shown dashed in Fig. 4 
and the corresponding values are given in parentheses in Table 1. 

TABLE 1 

Dynamic Stress-Strain Curve for Nylon Yarn 

6                  a, gms/den c, cm/ms 

0                              0 240 
.01                        .55 192 
.02                       .91 172 
.03                     1.22 159 
. 04                      1. 50 153 
.05                     1.76 150 
. 06                    2}T02 154 
.07                    2.35 175 
.08                     2.75 220 
. 09                     3. 44 314 
.10                    4.95 408 
.11                    7.33(6, 84) 502(40* 
.12                   10.75(8. 73) 596(40* 

14 
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The problem that had been previously solved 
by the method of characteristics, and which is now solved by 
the method of successive substitutions, was that of a 50 cm 
length of Nylon string with one end fixed and the other impacted 
by a slider that accelerated it from rest to a velocity of 90 m/sec 
in 0. 15 millisec.    The increase in velocity was not linear; the 
values used were determined from the experimental data.    For 
the method of characteristics the value of v    during the period 
of acceleration must be known; and for the iterative method the 
values of displacement,  s,  at the moving end of the string are 
required.    The accepted values of v   and s are shown in Fig.  5. 
The values of 3 were derived from the previously-used values of 
vQ and are consistent with them. 

The rise time of the velocity, as determined 
from the experimental data, was about 0. 15 millisec; this value 
is typical of the rise times usually observed.    The velocity of 
propagation of small strains, according to Table 1, is 
240 cm/millisec.   At this velocity the initial strain will travel 
36 cm,  or 72% of the length of the string, before the moving 
end reaches its full velocity.- 

Figure 6 shows the results of the iterative 
(successive substitution)  solution of the problem.    The graph 
shows strain, e,  as a function of position, x.    Each plotted line 
corresponds to a fixed  time, that is, to a selected value of the 
time-index j.   A square lattice-mesh with n = 50 in the 
normalized variables was used.    In the actual variables this 
corresponds to an interval in x of L/50 = 1 cm and in t of 
L./50   c0 = 4. 1667 microsec.    In the upper part of Fig.   6 there is 
evidence of oscillations; these will be discussed later.    For the 
present we shall confine our attention to the lower part of the 
figure where no oscillations occur. 

The previously published [5, 6] solution of 
the problem as obtained graphically by the method of character- 
istics is shown in Fig.  7.    The abscissa is x, the ordinate is t, 
and the straight lines are characteristics; except in the regions 
where characteristics cross they correspond to lines of constant 
strain.    Since the coordinates of Figs.  6 and 7 are different they 
cannot be readily compared.    To permit a comparison a single 
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Fig.   6.    Strain pattern in nylon yarn calculated by successive substitution for 
a time-independent model.    Time interval between lines is 0. 0417 millisec. 
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new graph has been constructed showing £ as a function of x, 
and containing typical results from both solutions.    This graph 
(Fig.  8) contains a few of the lines of Fig.  6 replotted, and in 
addition some corresponding values (plotted points) obtained 
from the method-of-characteristics solution.    The agreement 
between the points and the curve is quite satisfactory; the dis- 
crepancies are no larger than might be expected when one of 
the methods is graphical.    The two points near the top of the 
figure that do not fall near a curve lie in the region where the 
method of characteristics indicated the presence of shock waves 
and the computer solution gave serious oscillations.    Since at all 
earlier times the iterative method gave the same result as the 
method of characteristics, its validity has been established for 
the solution of a non-linear, time-independent problem, so long 
as oscillations in the solution are not encountered. 

We now return to a discussion of oscillations 
that occur in the iterative method in the region of large strains. 
The first evidence of oscillations in Fig.  6 occurs at j = 110, 
when the strain in the material varies from about 0. 051 to about 
0.094.    Referring to the stress-strain curve,  Fig. 4, we see that 
it is concave upward throughout almost all of this range of strains. 
When the stress-strain curve is concave upward we may (from 
the mathematical standpoint at least) expect shock waves to 
develop.    Since a shock wave approximates closely to a discontinuity 
we should expect it to throw the iterative solution into oscillations; 
it was shown in Report I that oscillations are generated when the 
iterative solution attempts to conform to a discontinuity. 

It may be asked why the iterative solution does 
not generate oscillations before j = 110,  since at that point almost 
all of the sample is within the region in which shock waves should 
develop.   A reasonable explanation of this is that the finite rise 
time of the velocity of the moving end of the string generated a 
sloping, not a steep, wave front traveling down the string.    Further- 
more, the initial portion of the stress-strainaurve is concave down- 
ward,  and this flattens the wave front still more. As soon as 
the part of the curve that is concave upward is reached, the wave 
front begins to steepen but only at j = 110 has it become steep 
enough to generate oscillations. 
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Between, j = 110 and j = 132 the iterative, 
oscillatory solution continued to converge, but with the oscilla- 
tions increasing in amplitude.    At j = 133 the oscillations 
rapidly increased beyond the capacity of the computer.    Modifi- 
cations were then made in the program to try to reduce the 
oscillations at least to the point where the program could be 
completed.    Decreasing the lattice spacing reduced the wave- 
length of the oscillations but didn't reduce their amplitude 
significantly.    Varying the error criterion, that is,  the maximum 
allowable difference between the results of two successive sub- 
stitutions when the values were accepted as converged, was no 
help.    Using a five-point least squares   formula instead of a 
three-point formula to calculate strain from displacement 
reduced the oscillations somewhat but only delayed the breakdown 
from row 133 to row 137.    Finally, it was decided to modify a 
part of the stress-strain curve that was being used,  the solid curve 
of Fig.  4.   A large section of this curve is concave upward, and a 
part of this section was replaced by a straight line.    The modified 
part of the stress-strain curve is shown by the dashed line in 
Fig.  4.    Examples of the results computed from the modified 
stress-strain curve are the curves for j = 140,   150,  and 160 in 
Fig.  6; oscillations are present but they are relatively small and 
do not cause the solution to diverge. 

The substitution of a straight line for a portion 
of the stress-strain curve that was concave upward was made 
principally to see what effect it would have on the oscillations. 
It is suggested by the graphical procedure that must be used in 
dealing with shock waves by the method of characteristics, in 
which the states before and after a shock lie at the ends of a 
chord joining two points on the stress-strain curve.    Aside from 
this the use of the straight-line segment has no particular signifi- 
cance.    However,  a study of the equations of motion in regions 
where shocks were possible led us to the conclusion that in some 
situations actual physical oscillations might be generated, if the 
model we were studying were sufficiently sophisticated to repre- 
sent an actual material.    This possibility is discussed further in 
the next section. 
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6.    Nature of the Oscillations when the Stress-Strain Curve is 
Concave Upward 

The oscillations that occurred in the solution 
of the linear case were explained in Report I as computational 
hunting above and below the true solution,  and they were attributed 
to the inability of the computational technique to conform to dis- 
continuities.    So when oscillations are encountered in the solution 
of the present (nonlinear) case, it is natural to assume that they 
are also computational.    The fact that the oscillations do not 
become troublesome until the stress-strain curve is concave 
upward tends to support this assumption, for when the curve is 
concave upward the front of a strain wave becomes steeper and 
a shock wave begins to develop.    Since a shock wave is for mathe- 
matical purposes a discontinuity our computational techniques 
should have difficulty in conforming to it and oscillations should 
be expected.    We accept this argument as valid; however,  it does 
not appear to be the full explanation of the oscillations observed. 

The much greater amplitude of the oscillations 
in the non-linear case (often exceeding the capacity of the computer) 
led us to consider whether the oscillations might not be partly 
computational and partly " real" .    By " real"  we mean that the exact 
solution of the problem might show oscillations even if the oscilla- 
tions introduced by our computational techniques were not present. 

It should be remembered that the problem whose 
solution is shown in Fig.   6 is only an approximation to an actual 
problem.    The problem solved in the figure does not contain the 
time-dependency that we believe is present in actual polymers. 
Time-dependency tends to smooth out discontinuities and might 
prevent oscillations from developing in an actual material.    We 
know of no cases where shock waves have actually been produced 
by tensile impact on polymers.    Nevertheless there is some indica- 
tion that oscillations may be observed experimentally.    Much of the 
data taken in this laboratory appear to show small oscillations in 
the strain above and below a smooth curve of strain versus position. 
These oscillations are at the very limit of the sensitivity of our 
measurements and we have always smoothed them out at an early 
stage of our analysis. 
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Petterson, Stewart, Odell and Maheux [ 8] 
also observed oscillations in strain patterns.    Their strains 
were produced by transverse impact of bullets on nylon yarns; 
the oscillations were quite large.    These authors believe the 
oscillations were not the result of any defects in the measure- 
ment but were actually present.    However,  since no explanation 
of the oscillations was available, they were smoothed out before 
the data were analyzed. 

We shall now present some theoretical con- 
siderations on the problem of whether oscillations should occur 
in the tensile impact of a time-independent material with a stress- 
strain curve that is concave upward over part of its length. 

7.    Theoretical Investigations Pertaining to Oscillations. 
Momentum Theorem. 

In what follows we shall need a momentum 
theorem which enables us to investigate the momentum balance in 
a region whose shape,   size and motion are specified arbitrarily. 
At time t let the closed surface S in Fig. 9 contain a mass m dis- 
tributed in any manner, the momentum of this mass being the vector 
M,  and the vector sum of the external forces acting on this mass 
being F.   An infinitesimal time dt later the mass m has moved, and 
occupies a volume bounded by the surface S2.    At this time the 
momentum has increased by the amount dM2 given by 

dM2    ■   F dt. (34) 

The volume whose momentum balance we are 
investigating coincides at time t with that bounded by the surface S. 
At time t it hence contains the mass m and the momentum M.    At 
time t+dt this volume has changed in a prescribed manner and is 
bounded by the surface Sj.    The momentum of the mass contained 
within it has increased by the amount dMj, which may be written 

dMj = dMa - dM2+dM2 = (dM^ dM2) + F dt (35) 

due to ( 34).    But 
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Fig.   9.    Closed surfaces for momentum theorem.    At time t,  S contains a given 
mass.    At t +   dt mass has moved to S2 and position of S has moved to S1# 
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Substituting in (35) and dividing by dt we obtain 

duJL ii> tU /MJAATW   ♦£   S,    fijJUL*. (37) 

The second term on the right hand side is of the nature of a 
convection term.    Equation (37) is the desired theorem.    Using 
it we shall derive certain consequences of the assumption that 
an abrupt increase in strain can be propagated at constant 
velocity c. 

Propagation of an Abrupt Increase in Strain.    Let us suppose that 
the strain increases abruptly from 0 to e at a vertical wave front 
which travels to the left with a velocity c, as indicated in Fig.   10. 
As usual x indicates distance along the string in its unstretched 
state.    Let us consider the region bounded by the two arbitrarily 
chosen,  stationary dotted lines, which at time t lie close to the 
wave front, one on each side, as shown.    These lines play the role 
of Sj in (37). 

The only external force acting is <r A, where A 
is the cross section of the (unstretched) string, this being exerted 
by the string on the right. 

In time dt the wave progresses a distance cdt to 
the left.    The length cdt of string thus undergoes a change in strain 
from 0 to e; hence a length cedt of (stretched) string passes 
through the right hand boundary (dotted line).    Dividing by dt we 
obtain for the velocity v of the string at this boundary 

v = ce. (38) 

Since the position of this boundary was chosen arbitrarily it follows 
that the velocity is the same and given by ( 38) at all points of the 
string to the right of the wave front. 

Let A be the cross-section area of the string. 
Then in time dt a mass f>Ac dt undergoes an abrupt change from 
velocity 0 to velocity ce.    The corresponding momentum change 
is c2ePAdt.    It follows that the increase in the momentum contained 
in the test region bounded by the two dotted lines is 
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Fig.   10.    Strain wave with vertical front. 

i I 
€i rt 

Fig.   11.    One verical wave front being overtaken by another. 
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^A^^hb). *      ^^ (39) 

But (37) states that this quantity is 

AX»AS~M*A «low % kbu &£fc 

— F ebb —/v>t«vt»fewt xA*t**-sj Haijvu&X- s-   (40) 

Equating (39) and (40) gives 

/c2fe = <r /• (4i) 

Note.   If the boundaries of the test region had been made to move 
with the string, the convection terms would be missing from (39) 
and (40); however,  since these terms cancel,  the result (41) 
would remain unaltered. 

Next let us consider the energy balance of the 
test region between the dotted lines shown in Fig.   10; however, 
this time we shall let the boundaries of this region move with 
the string.    In time dt we have, noting (38) and (41), 

SisßlAsdL •fay* fioxcu <r A - &6 <r A d± (42) 
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J>**%^(**>w*fr»Ht) ^fk/jJ^Akf (43) 

- -g <.6<T A otfc. (44) 

Also 

-^^Ao^ (45) 

where a- is the average value of <r (e) over the strain interval 
ave ° 

o to e. 

The corresponding power equations are obtained by dividing 
(42),  (44), and (45) by dt.    We note that exactly half of the 
energy input is utilized in increasing the kinetic energy, which 
leaves an amount 2 cecrAdt   to balance the increase in potential 
energy. 

In the linear case, where cr  is proportional to 
€, it is true that 

and we get a perfect energy balance«    If, however, the stress- 
strain curve is concave downward 

and the available input energy is not sufficient to provide the 
required increase in potential energy.    The abrupt wave front 
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postulated cannot be maintained.   Actually, the top of the wave 
lags behind the bottom, the wave spreads out,  and the front loses 
its abruptness. 

Finally, the case in which we are primarily 
interested is that in which the stress-strain curve is concave 
upward, in which case 

and the amount of input energy available is more than enough to 
provide the required increase in potential energy.    The postulated 
abrupt wave front moving with a constant velocity is hence not in 
dynamic equilibrium, and cannot be maintained.   In an actual 
problem the possibility exists that mechanical energy may be 
dissipated as heat.    Such a mechanism cannot explain the present 
situation, however.    The laws of classical mechanics must be 
obeyed, even while kinetic energy is being converted into heat.    It 
may be mentioned, however, that the excess energy might produce 
oscillations such as those mentioned on page 23.    This, of course, 
infers a modification of our present abrupt form of wave. 

Effect of the Merging of Two Waves. 

Further insight into the nature of the difficulties 
encountered when the stress-strain curve is concave upward can be 
obtained by considering two successive abrupt waves, and seeing 
what happens when one overtakes the other,  Fig.   11.    Here the two 
waves were started at different times.    In time dt the two waves 
progress by amounts ctdt and c2dt, respectively; the string between 
the two fronts moves a distance c1£1dt,  and the string on the right 
of the second front moves a distance [ c^i + c2( C2-£i) ] dt.   Dividing 
by dt we obtain   the corresponding velocities, thus 

/tr, = <&,£,- ArthüX, Mddou~+ jwdb*. 

Equation 41 can be applied to give the velocity 
of the first front, thus 

*>, = V^'f*'    "h* <r, = <r(6,). (47) 
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In order to obtain the velocity of the second front we shall apply 
the momentum theorem (37) to the test region lying between the 
two vertical dotted lines in Fig.   11, which lines move with the 
string.    In time dt the momentum in this region increases by the 
amount pAc2dt(v2 - v2), the convection term is zero,  and the total 
external force is 

(48) F * Ca- rf) A *&>* o\-- <r(ez). 

Equation (37) thus becomes 

or noting (46) 

We are  supposing that the stress-strain curve 
is concave upward; hence, we see from (47) and (49) that 

C-2    > /C,. (50) 

It follows that the second wave is certain to 
overtake the first.    When it does we again have a single abrupt 
wave front, the strain discontinuity being 62«    If this wave 
proceeds     with velocity c, it follows from (41) that 

^ - vT**-  ' (51) 

also the string velocity immediately to the right of this wave is 

/v -*£? (52) 

See Appendix 2 for some comments on an alternative approach, 
in which the merged wave is assumed to propagate with a velocity 
lower than c. 
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due to (38). The difference quotients which appear under the 
radicals in the expressions for Cj, C2, and c are the slopes of 
the three chords shown in the stress-strain curve of Fig.   12. 

Just before the second wave catches up with 
the first the velocity of (almost) the entire string to the right 
of the wave is V2«    Just after the second wave overtakes the first 
the velocity immediately to the right of the wave front is v.    The 
velocity of the entire string to the right of the wave cannot change 
abruptly from v^ to v; hence, unless these quantities are equal, 
the merging of the two waves does not take place smoothly, and a 
tightening or slackening of the string occurs.    The corresponding 
change in stress, and hence strain, constitutes a disturbance which 
causes a corresponding disturbance to be propagated along the 
string to the right away from the wave front. 

Substituting (47) and (49) in (46), and (51) in 
(52), we obtain 

(53) 

Since the stress-strain curve is concave upward 
it is evident that 

or 
crx€, > <r, fc2 • 

It follows that 

0 > - (y*3, -V^S 

(fe -V^)* > OViK6**^ 

(54) 



Fig.   12o    Stress-strain curve showing chords that determine velocities of vertical 
wave fronts. 

o L x 
Fig.   13.    Wave front of arbitrary but constant shape. 
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In view of (53) this may be written 

/ir > <&z . (55> 

It follows, as described on page 33, that the merging of the two 
waves is not smooth, but causes a disturbance which travels 
along the string in the opposite direction from that of the wave. 
Note,    The situation portrayed in Fig.  11 can be achieved by 
using a stress-strain curve composed of two straight lines. 
One passes through the origin, and is valid for 0 < e   < ex; the 
other is steeper, and is valid for 6\ < £ < £z» 

Effect of a Change of Shape of the Strain-Wave Front.   From Fig. 12 
and the equations  (47) , ( 49),  ( 51), and ( 55) we saw that when one 
abrupt strain wave front catches up with another  there is a sudden 
slackening of the string behind the wave front, and a sudden increase 
in the velocity, or surging forward of the wave. This suggests 
that the wave front loses its abruptness and constancy of velocity. 
Accordingly let us consider the case of a wave front of constant 
shape which moves in translation with a velocity c(t),  no longer 
required to be constant,  Fig.   13. 

At time t = 0 let the displacement s (x, o) be 
denoted by f ( x), thus 

^0,0)    =fC*). (56) 

At present we shall leave f(x) arbitrary.   At time t this displace- 
ment-position curve moves a distance      L c dt   to the left; hence 

s H^+l*-4*)* (57) 

In Appendix 2 an alternative point of view is presented (but not 
worked out) in which the sudden increase in propagation velocity- 
does not occur. 
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g-^-^W^), <5*> 

OS »^«/rfW**)5*«. ^ -A" v     «k y (59) 

At time t let the front extend from 
x = 0 to x = L; then the momentum of that part of the string 
which composes the front is 

W\fAf^*r^PVe^ rA(°£>V (60) 

where A is the cross-section area of the string, and s    is the 
displacement at the right hand boundary of the front. The 
stress at this boundary is 

<rL = tf~CO (6i) 

where e    is the strain at this boundary. L 
Applying the momentum theorem (37) to that 

region which contains the front, and which moves with the front, 
we obtain 

^(AfCAJ +Apc(c eL) - A n. 

or,  canceling A and noting that all quantities   «accept c and t are 
constant, 

4&-  4-P£.   C* ^   <T.   . (62) r^^ + f^c a<r^- 
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This differential equation can be solved exactly; however, it 
is evident by inspection that,regardless of its initial value, c 
is going to approach the value obtained by placing dc/dt m 0 
in this equation.    This final value of c is 

/C   - 
f^ (63) 

regardless of the shape of the front. 

We note that this value agrees with (47), which applies to an 
abrupt wave front. 

Next, let us suppose that   c   has attained its 
final value (63).    We shall consider the energy balance of the 
same region to which we applied the momentum theorem,  namely 
that which contains the front and moves with the front.    Since the 
region moves with the front, we see that the rate of increase of 
kinetic energy and the rate of increase of potential (strain)  energy 
in this region are both zero.   Also, noting (59) we see that 

External power input =   f\ <T~L C £ u ( 64) 

Kinetic energy loss per second     . _ x 

through convection   =  — G^«-) 

= ^ AcrLc€/_ (65) 

due to (63).    Also, 

Jtofa&Ji (Aha*™) 

~ A^^e^^t.. (66) 
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For there to be an energy balance it is necessary and 
sufficient that 

'    cr- 
^OAXL    '   5 L' (67) 

Here a- is the average value of <r , averaged on e 
from 0 to   e_ .    We note that the condition (67) is 
independent   of the shape of the front.    In fact the above 
relations agree with those on pages 29 and 30, which 
pertain to an abrupt wave front.    It follows that the 
situation in regard to energy balance cannot be improved 
or even altered by changing the shape of the front. 

Overtaking of a Wave Front by an Infinitesimal Wave.   On 
pages 31 to 35   it was shown that with a concave upward 
stress-strain curve one abrupt front overtaking another 
will not smoothly merge with it.    To be certain that the 
situation doesn't appear different when the overtaking front 
is treated as a series of infinitesmals let us consider the 
case where an infinitesimal wave comprising a strain 
increase de and moving with a velocity 

/C,     y  /C (68) 

overtakes a wave front comprising a strain increase   e 
and moving with a velocity   c, as indicated in Fig.   14. 
From (38),   (41),  and equation (138) of the appendix we 
have 

nr - /c€; (69) 

J^    -3.    V^/f6   > (70) 

,cf=l/<r'(o/p, (71) 
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At 
( + <k 

Fig.   14.    Vertical wave front being overtaken by an infinitesimal wave. 
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It 
where er =   er (e),  and(r(e)>0.    The stress-strain curve is 
thus concave upward,  and   c   increases with   e.    Differentiat- 
ing (69),   <r , and (70), we obtain 

cU*-   3   -CoL€   +•  edc, (72) 

<L<r - r'C€)de , (73) 

or, noting (70) and (71), 

^-~&j^^- (74) 

Equations (72) and (74) give the increases in v and c, 
respectively, when the infinitesimal wave catches up with 
the main wave, thereby increasing it by de.    Substituting 
(74) in (72) now gives 

46. 

Since Cj >c, which follows from (70 ), 
(71), and the fact that the stress-strain curve is concave 
upward, we see from (74) and (75) that dc and dv are both 
positive.    These results are in agreement with those 
obtained on pages 32 and25. 
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Consideration of a Discrete System of Masses and Springs 
as an Approximation to a Continuous System.    We have shown 
(see pages35p38 ) that no wave front of any constant shape 
can exist when the stress-strain curve is concave upward. 
In order to get some idea of what is going on, without becoming 
involved with a lot of calculations, we shall consider the 
discrete system of masses and springs shown in Fig.   15.    The 
masses are represented by the numbered circles, are all equal, 
and extend indefinitely to the left.    The nonlinear springs which 
connect adjacent masses are all alike,  and are represented as 
sagging cords.    Until the slack is taken up these cords carry no 
tension whatsoever; but as soon as the slack is taken up they 
behave as infinitely stiff elastic springs.    The corresponding 
stress-strain curve is shown in Fig.  16, though here the role 
of cr  is played by tension, and the role of e is played by the loss 
of slack, or relative displacement.    The masses are all initially 
at rest as shown; and starting at time t = 0 the right end moves 
to the right with a constant velocity v0.    We note that the stress- 
strain curve,    though consisting of a broken line, lies in the 
category of concave upward. 

Whenever the slack is taken up in any of the 
cords, impact conditions prevail. If the cord is that to the right 
of mass 1, this mass changes its velocity abruptly from 0 to 
2 v0.    If the cord lies between two masses, those masses abruptly 
exchange their velocities.    These facts are enough to enable one 
to draw the displacement-time curves for the various masses, as 
shown in Fig.  17.    In drawing these curves we work from left to 
right, and note that slope is velocity.    The slack is four divisions; 
and when the vertical distance between adjacent curves attains 
this value, impact occurs and slopes change abruptly. 

As time goes on, the number of masses involved 
in the motion increases; also, since slope is velocity we see that 
of these masses alternate ones are at rest, and the other alternate 
ones are moving with a velocity 2v , this being true at any time. 
The velocity distribution along the masses may hence be regarded 
as composed of a constant velocity v   plus one which alternates 
between v   and -v   as we pass from   mass to mass.    The alternat- o o 
ing velocity does not contribute to the overall motion, but it doubles 
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Fig.   15,    String composed of discrete masses connected by slack cords. 

Fig.   16.    Stress-strain curve of string in Fig.   15. 
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the kinetic energy contained in those masses which are involved 
in the motion.    We see that although the disturbance moves to 
the left at a uniform rate, it leaves behind it not a series of 
masses all moving with the same velocity v , but a motion having 
in addition a violent oscillation of amplitude vQ.    We have thus 
encountered a situation similar to that which we have been led to 
believe takes place in a string whose stress-strain curve is con- 
cave upward,  after a shock wave has formed. 

Figure 18 is similar to Fig.   17, but corresponds 
to a case wherein the velocity of the moving end is altered during 
the course of the motion.    It was thought that possibly such an 
alteration would cause a permanent scrambling of the pattern of 
motion; but such is evidently not the case. 

In an attempt to approach the continuous distribu- 
tion let us now divide each mass into   n   equal masses, and dis- 
tribute these evenly along the string, the total mass per unit length 
remaining the same.    The slack in the string between adjacent 
masses is thereby also reduced in the ratio l/n.    Proceeding as 
before, we again obtain a motion wherein alternate masses of those 
involved in the disturbance are at rest, and the remaining alternate 
masses are moving with a velocity 2v .    Impacts occur n times as 
frequently as before, and the disturbance progresses to the left at 
the same constant rate as before.    In the disturbed region the 
velocity distribution may be considered to be composed of the 
constant velocity v   plus a violent oscillation of amplitude v   as 
before; however, the wave length is now l/n times what it was 
before.    If, now, n is increased indefinitely in order to approach 
a continuous mass distribution, this wave length approaches zero; 
and the oscillation   retains its violence, but becomes infinitely fine. 

It may be mentioned that in the case of discrete 
masses even if the springs were linear an end disturbance would 
not be propagated without distortion; for we are dealing with the 
mechanical analogue of a low pass filter.    Different frequencies 
are propagated with different velocities; and above a certain 
cutoff frequency are not propagated at all. 
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More explicitly let us consider the linear 
system of Fig.   19.    The masses are all of magnitude M, and 
the spring constants are all of value K.    The masses are 
numbered from left to right, and the displacements toward the 
right are indicated by s^.    The equations of motion are 

KG«u«-a***4«M^gS. <76) 

For vibratory motion we place 

^-M^ M^ (Cot  +Y)   J 

hence,   (76) becomes 

where 

o 

We note that a>    is the resonant angular frequency of any 
mass if the two adjacent masses are held fixed.    If 

u>% 

where 

* c-«0- 
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(77) 

1. 

^,-J(/--^)^ ^»Oj (78) 

H     • (79) 

I   "    u30
l|   <     > (80) 

the solution of the difference equation ( 78) is 

(81) 

(82) 



Equation (81) in (77) gives a standing wave of arbitrary 
amplitude, phase, and position; however, by superimposing 
two of these, thus 

- >C Jju«> ( J- <* -   Ult.)) (83) 

we obtain a traveling wave.    This wave moves to the right 
along the i-axis with a velocity 

W "      -^T   > (84) 

which, in view of (82), depends upon the angular frequency co. 
In this wave only integral values of i pertain to the masses, 
and thus have direct physical significance.    Since u> is 
positive,  (80) is equivalent to 

0   <C    UJ    < ^pi    ">o  . (85) 

If 

"«•>   > V2 CO. (s6) 

( 80) is violated; and in place of the traveling wave (83) we 
obtain the attenuated wave 

^     -A(J( 

where 

(87) 

«=**•&*'("5? " ')• (88) 
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Finally, if on = 0 there is no motion.    We 
now see that a wave is propagated only if o> lies below the 
cutoff value -fH[   (t)  , in which case the velocity of propagation 
depends on u. 

Oscillations in the Continuous System.  The oscillations which 
we have encountered in the discrete system just considered 
(see page 45) suggest a   possible way out of the difficulty 
which we found in connection with the lack of energy balance 
in the propagation of an abrupt, or square wave (see page31). 
It may be that the extra energy which is available in the case 
where the stress-strain curve is concave upward is used to pro- 
duce oscillations in that part of the string which has been passed 
over by the wave front.    In investigating this possibility we shall 
consider the string in the unstretched state as extending from 
x = - °° to x = 0; and at time   t = 0 the right end of the string is 
suddenly given a constant velocity v   to the right. 

We shall consider a resulting strain wave of 
the form 

(89) 

where e , c , _Q_ , and the a's are constants,  and where 

X.   being the wave length.    In addition to the constant value 
£   we are thus providing for the possibility of two sinusoidal 
waves of wave lengthX- moving in opposite directions with 
velocity c .    If these two waves were infinitesimal, we know 
that c   would be the velocity corresponding to a strain c 
(see appendix 1, page 62 ).    In any case we should expect c 
to approximate this velocity, which is    -yar'( €0)/f.   We shall 
try to determine the various constants in ( 89) so as to satisfy 
various dynamical conditions, one of which is that the energy 
unbalance which we encountered on page 31    be removed. 
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The differential equation which determines 
the motion is 

(91) 

or 

At x = 0 we have 

hence (92) gives 

(92) 

(93) 

Ü  rO    >^*t  7>-0 . (94) 

Substituting (89) in (94), we obtain 

This relation will be satisfied for all values of t if and only 

if 

0.3 r -a,  ,   a^L     CL4- (Lz , (95) 

due to which (89) becomes 

♦ a^ACx-**)^^****«]. (96) 
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This may be written 

= €e  +xt*uSll(-a.lA^A.Ltt +dzc^SL£,t^)>       (97) 

or 

£=£„  +   €, yC^-fi-^ A^f (ilc.t +¥) (98) 

where ex and y are constants. We see that £ is composed 
of a constant and a standing wave of wave length X. = 2-n/SL 
and angular frequency CO =JLc0. 

Integrating   (98) with respect to x holding 
t constant, we obtain 

^,rfc07C +j^A^Sl%AA^(Stc0i: + )() -»-"^(t) (99) 

where    i|i ( t) is an unknown function of t.    But 

s   =   v t   when x = 0, (100) 
o x        ' 

which with (99) gives 

♦■ (t)   ■ v t- 

hence 

^.^♦X^^^CA«.* **)+***■ (ioi) 

Differentiating partially with respect to t, we obtain the 
following expression for the velocity 

or = rvp + e,c-0Ai>«'SL7cc#b(Ji£ot-i-V). (102) 

The kinetic energy per unit length of 
string is 

J-^- = -Hr I1** + Ä^# £ 1 Le A^sCf- CM (A*ak +)f) 

+ ^LtAA^XJl1/Cin\si.C0-i:+)!)'] (103) 

where A is the cross-section area. 

51 



The average of this expression taken over a wave length 
X    =    2ir/ll    is % +xft 

the average taken over a time period   2ir/ fi c    is 

T0 - —y ^ 
•at* 'to 

[«To2-*-   G-^M^ZSl%] I AL.. tfcJ- .. i     i - <105) 
5. 

and the average over both is 

-.LL[^+J^J. (io6) 

Here x   and t   are arbitrary values of x and t,  respectively. 

The strain energy,  or potential energy,  per 

unit length of string is 

$-A/ 
(107) 

hence, before this can be averaged over a space period \ or 

a time period 21T/flc   }<r ( e) must be specified.    For the 

present let us place 

(108) 
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where E    and Ea are both positive constants.    We note that 
this stress-strain curve is concave upward.   Equation (108) 
in (107) now gives 

$-¥*¥ 
Substituting (98) in this expression, we obtain 

j£ = M«>[£* <-*€•£, <*LQ.% <^(Sic0t +7) 

(109) 

iie^^sir^H^^i-t^)       (110) 

The average of this expression over a wave length is 

r-U£^E0-fJE,#0) 

+$AfcE.,*2£,6m)Aj-t*-C*t+V)>     (HI) 

the average over the time period a.1T/a«bis 

+iAe,L(5e «E^P^^AT:       (112) 
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and the average over both is 

+ 1 **?(£* ta.E,£#), (U3) 

Adding (104) and (111) we obtain the following 
expression for the average of the total energy taken over a 
wave length. 

1^ i 
6 

-l^.Y^o-ttf/**)]/^ 2(sic0± -f y).(H4) 

There is no mechanism for transferring energy to and from 
an appreciable length of the string at a frequency _n.*#>{r» which 
is twice the frequency of vibration of the standing wave.    In 
order to avoid a situation where this is implied, we equate the 
coefficient of the cosine in (114) to zero, thus 

rUtfc - A £,*(*. ***/*•) - Ö <115) 

or 

r     =n/£-^£'*°   . (U6) 
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This expression determines c .    Noting (108) we see that 
(116) may be written 

>c0 r y<r<ro/f   , (117) 

which is the wave velocity corresponding to a strain e . 
This is.in line with the conjecture made on page 49.    In view 
of (115), (114) reduces to 

+i*C(3£o Kt£,0+£<j2te«£,0 (118) 

or, substituting (116) for c , 

+i A 6*(£.*2 £,£>).    / 

Adding (105) and (112) we obtain the 
following expression for the average of the total energy 
per unit length taken over a time period  2^ /Si. /Ce . 

^(a0iiE,e.) -ÖPAC.V 
(120) 

But here the coefficient of the cosine is zero due to (115); 
hence,  (120) duplicates (118), or (119).    We thus    have 
finally, noting (106) and (113) 
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Next, let us suppose that the disturbance 
moves to the left with an average velocity c.    We do not 
require that there be an abrupt wave front,  nor that the wave 
velocity c be constant.    In fact at this point we do not have to 
know the detailed nature of this front - only that there is a 
transition region of finite length between the unstressed string 
and the string in the stressed state described above (see eq 98), 
which region moves to the left with an average velocity C.    We 
shall now proceed to obtain three conditions which must be 
satisfied for the conservation of mass,  momentum, and energy. 

Conservation of Mass.      The total stretch which occurs in the 
transition region,  or " front" , will be denoted by s   .    We do 
not know this quantity; however, we do know that it is bounded. 
Referring to Fig.  20,  let x    be the abscissa of the right hand 
boundary of this front; then (101) gives 

But 

^Mty-tJLf •hjl^^n.7.f:A^(si£l)± +*) + ^«,;fc,      (122) 

X^r-vCi  + X,(t) (123) 

where xx(t) is bounded.    This in (122) gives 

+ ~~ SU~SCfi.r X~*(SLC0t +y)+/irö£.       (124) 

As time goes on,  all terms in this equation are bounded 
except the first and last terms on the right hand side. 
These terms must cancel each other; otherwise the 
equation will ultimately be violated.    It follows that 
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07* 
C   =     —~—     • (125) 

Conservation of Momentum.    The total momentum in the 
string is 

0 

M = MF  + h?\ Ard+% (126) 

*F 

where M    is the momentum in the front,  and is known only 
to be bounded.    Substituting (102) in this expression we obtain 

o 

+ ^(^ii7tF-0^(Ac^fX)||   (127) 

This, however,  must be equal to the total impulse applied 
at the right hand end; hence 

Placing x = 0 in (98), then substituting in (108) and (128), 
and then adding an unknown but bounded term M       to allow 
for the fact that a short time may be required for  e   to 
attain the form (98), we obtain 

M = A^ {£„[*. + «,^<jit.t +fl] + E, 1*2 

■h Mo ^ ,A*io (Afi.i4*) + £,Vu.lfac,-kW)]J tit 4 M0F 

58 



Replacing x    in (127) by (123), then equating the unbounded 
terms in        (127) and (129), we obtain 

("Wo*   -      £0£0   +E,(C + -J!). (130) 

Conservation of Energy.    The energy imparted to the string 
by the force at the right end is 

£ •-ki#,J<r(i^) Jjb . (131) 

This expression differs from (128) only by a factor of v , 
and can hence be obtained by multiplying (129) by v , 
thus 

(132) 
- ^^[A^i<sicot+*)-M».Av]+nrc MOF* 

The total energy, kinetic and potential, 
contained in the string is 

T+$--(V$A)
£* + eB (133) 

where o_ is bounded.    Substituting (119) in (133), then 
equating the unbounded terms of (132) and (133), we 
obtain 
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or noting (130) 

J fX 

jL6?(3ä.+ie,Q ^Xs+izti -- (c r »i. (134) 

Substituting (125) in (130), we have 

*€(*.+ **.)+$**,*•    =3Lf^ (135) 

or 

finally 
Substituting (136) in (134), we obtain 

or 

(137) 

This quartic equation determines eQ, after which Ci is 
given by (136), and 5 by (125). 

Thus we have shown that for a particular 
concave-upward stress-strain curve as given by (108) it 
is possible to specify the constants in an oscillatory 
solution (98) to a tensile impact problem so as to give an 
energy balance.    The implication is that for any concave- 
upward stress-strain curve the solution would be 
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oscillatory.    However,  since we have seen that the 
iterative procedure used in our computer calculations 
will produce oscillations at a discontinuity even when they 
are not required for energy balance it would be pointless 
to try to account for the oscillations observed in the com- 
puter results from energy considerations alone. 

Before leaving this theoretical analysis 
of oscillations it shoiJd be pointed out that in some instances 
problems have been left without working out all the details 
and without utilizing all the known conditions of the problem. 
This was done because we were anxious to get on with solutions 
involving creep of the material.    We believe that creep is 
always present and that a time-independent model can never 
accurately represent reality.    Hence, although a more complete 
study of the time-independent model could be made, and 
although such a study might help in the understanding of the 
propagation of actual strain waves, we will not develop the 
time-independent analysis further at this time. 

8.    Conclusion 

It has been shown in the present report that 
a non-linear time-independent tensile impact problem may be 
solved by an iterative computer procedure and that the result 
agrees with the solution obtained by the method-of-characteristics. 
In either method difficulty may arise if the stress-strain curve 
becomes concave upward.    In the method-of-characteristics these 
difficulties are overcome by assuming shock conditions (and by 
implication at least assuming the production of heat).    In the 
iterative computer procedure the difficulties cause oscillations. 
Although partly computational it has been shown that in many 
ways these oscillations are a more correct solution than the 
assumed shock. 

We are now ready to apply the iterative 
computer procedure to the time dependent non-linear case which 
we believe is closer to reality than anything discussed so far. 
This will be done in Report HL 
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Appendix 1 

Independence of Infinitesimal Strain Waves.    The purpose of 
of this section is to check the validity of the idea that in the 
case where <r = o-( e) each infinitesimal strain increment 
travels with its own velocity 

ä(0= F^VF (138) 

independent of the others.    This idea is suggested by the 
differential equation 

f 7T* "  TT <139> 

written in the form 

3ay4»_   .. ^l a £ 
a*1 J* (140) 

(141) 

where   c   is given by (138).    For an infinitesimal 
disturbance, eis essentially constant,  (141) becomes 
the wave equation closely, and it appears that the 
disturbance is propagated undistorted at velocity c (e). 
If the disturbance is an infinitesimal strain increment de, 
we have the above-mentioned idea.    Although the above 
provides a suggestion, it leaves a great deal to be desired 
by way of proof.    In what follows we shall suppose that the 
idea is valid, and shall determine whether or not the strain 
wave which it gives satisfies the differential equation. 
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At time   t  let the strain wave be represented 
by the curve in Fig.  21.   As time goes on, the future shape 
of this curve is determined by the motion of the individual 
strain increments — each shearing by the others at its own 
velocity c(£), as indicated.   In time dt each strain incre- 
ment d£ moves to the left a distance c dt.    It follows that at 
abscissa x (of the unstretched string) the strain increases 
during this time by the amount 

<*<* - H *-& ^ I 
hence, dividing by dt, 

||_-*.(t)f|, d«) 

which is a quasilinear first order partial differential equation. 
Equation (142) does not resemble the desired equation (140) 
or (141); and cannot be transformed into it in any evident 
manner.    However, there is still the possibility that the 
solution of (142) will satisfy (141).    We shall therefore solve 
(142).    Equation (142) may be written in the standard form 

^t_/C^ T%- ° > (143) 

from which we see that the characteristics are given by the 
equations 

«it   A* - AL (144) 

These give 

£ - /Cs. - suncdÄ*d:7 (145) 
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Fig.  21.    Strain-wave front composed of incremental strains each moving at 
its own velocity. 

Fig.   22.    Strain-wave front with negative slope composed of incremental waves, 
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whence 

+ C(CJ£   r C, = z**dz±. (146) 

Replacing c2 by £ we obtain for the general 
solution of ( 143), and hence (142) 

6   -  -FLX+ -cCOf] (147) 

where f is an arbitrary function.    Initially  t = o   and 
(147) becomes 

6 = f 00 (148) 

from which we see that f(x) is the arbitrarily specified 
initial distribution of e. 

From (147) we obtain 

M -- (f'X«/x +fi!td.e +x:d±) (149) 

where 

Equation (149) may be written 

(l-f^)^ ^fkdf+Aitt) (151) 

from which it follows that 
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,.aa 

ae   - 
** J-f'*/£    ' 

(152) 

/ 

3*" l-f'/CU 
/./a       - (153) 

We note that these quantities satisfy the differential 
equation (142).    In order to check the differential equation 
(141) we need 3* s/3 t^vhich we shall now proceed to calculate. 

Since 

£   '   37. (154) 

we obtain s by integrating e with respect to x holding t constant, 
thus 

A=ff[7C4<4<te]J*   +M0,*), (155) 
o 

where s(o, t) is the value of s at x = o and time t.    It follows 
that 

(156) 

Since, noting (152) and (153) 

z±sL*ct)+t**y&h     (157) 
■*&y 

(156) may be written 

+&+(ö>*')'   l     (158) 
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Integrating by parts, we obtain 

<^A 

Differentiating again, we have 

Here in the first bracket we note from (147) that 

«36 3£ II, f [TCV^*J [ä(6H*^) HJ ; 

also,  since, noting (152) and (153), 

it follows that 

.*co&^($. 

(159) 

(160) 

(161) 

(162) 

(163) 
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Furthermore 

In view of these relations the integrand of the integral in 
(160) becomes 

(164) 

and (160) becomes - 

at1  < J" 

-h ?&+*(&][&'(*) Hi 7 ^*. 

Integrating by parts, we now obtain 

2£ 

-Ä^)ft^^)*/«.'C0||} 

+ £*<«,*) 

(165) 

(166) 

(167) 

7 
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Noting ( 162) we see that the first and last terms in the first 
bracket cancel each other; also, the two terms in the integrand 
cancel.    We then have 

a 
d Ssh*fcl% &-*»,     <«•> 

which in view of (162) becomes 

or 

#=Hfel^-H^io. (170) 

We saw from (147) that the process 
indicated in Fig.  21 is sufficient to determine c   if f (x), 
the initial distribution of e, is given.    From (155), however, 
it is evident that s is determined only to within an arbitrary 
function s (o, t).    If for x = o we choose for this function one 
that is physically possible, then the differential equation (141) 
is satisfied at x = o, the unknown left side (i^a/ai2) x ' x = o 
being determined by the known right side 

o 
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It follows that the large bracket in (170) vanishes, and (170) 
becomes 

which duplicates the desired differential equation (141).    We 
have thus shown that the idea of independent propagation of 
infinitesimal strain increments,  as described on page 62 and 
indicated in Fig.  21 is valid. 

In Fig.   21 f (x) is shown with a positive slope. 
This slope may, however,  be negative,  as shown in Fig.  22— 
the above mathematical treatment is valid in both cases. 

From the denominators of (152) and (153)  we 
see that if the slope of f(x) is positive, and if c*(e ) is 
positive; then after a certain time has elapsed defix. and 
3 e/ 9 t    become infinite.    For strain e this time is given by 

/ -f'/cOt - 
or 

t - -rrr* . (i7i) 

Here f1   is the initial value of d^/ 9xfor the specified value of e, 
as is evident from (150).    The smallest value of t given by 
(171) for our range of values of e is the time required for a 
singularity to develop.   At this time the validity of the above 
mathematical treatment ceases; and at subsequent times some 
extension of this treatment is necessary. 

70 



Appendix 2 

Here some additional comments will be 
made on the problems that arise when the stress-strain 
curve is concave upward.    These comments are mainly- 
due to only one of the authors (HJH). A concave-upward 
curve is shown in Fig.   12.    The smooth curve may be 
approximated by two or more chords, as shown, joining, 
for example, the points 0,  (cr^i), and ( tf 2, e2).    If only a 
single chord, joining the points 0 and ( o- 2, e2) is used, a 
strain wave of height e2 will travel with velocity "j/o- 2/f€2. 
The equations of continuity and momentum will be satis- 
fied, and the equation of energy will also be satisfied for 
the linear stress-strain curve.    In this linear case it is well 
known that the total energy is half kinetic energy and half strain 
energy.    But strain energy is found by integrating under the 
stress-strain curve from 0 to e2.    If we use the linear curve, 
energy is conserved but if we use the actual curve,  or the two- 
chord approximation to it, we find that the potential energy 
stored in the string is below that stored in the linear case.    If 
we add the potential and kinetic energies we find that they do 
not total the amount of work done in generating the wave, 

A way out of this dilemma that is often adopted 
is to assume that a square wave of height £2 travels with a 
velocity given by the slope of the single chord, and to as sume 
that the work done in generating the wave goes into the normal 
amount of kinetic energy, into a lesser amount of strain energy 
(corresponding to the area under the curve that is concave 
upward), and into heat.    The amount of heat generated is just 
sufficient to conserve energy, but the way in which it is 
generated is usually not specified.    Some insight into how the 
extra energy might be converted into heat is given by two 
problems solved in the body of the present report:   the problem 
of the equal masses joined by slack strings, and the problem in 
which a disturbance consisting of a wave of fixed height was 
assumed, with an oscillatory wave superposed on it.    In each 
of these problems it is possible to satisfy the equations of 
momentum,  continuity, and energy. 
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6 

Fig.   23.    Schematic diagram of the front of a square wave, with the 
x-dimension greatly magnified. 
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A possibility exists, however, that the model 
usually adopted is incorrect.    If this is true, the treatments 
usually given, including a part of what has been presented in 
the present report, do not correspond to reality.    They are 
self-consistent and formally correct but they may still be 
physically incorrect.    To see where the usual assumptions 
may be wrong, it is necessary to consider the nature of a 
wave of tension as it propagates into a string.    We will assume 
that the wave is a square wave.    Mathematically the wave is 
infinitely steep, but physically it must certainly have a finite 
thickness.    This thickness may be very small, but it is still 
several atomic spacings.    Such a wave is shown schematically 
in Fig. 23 with the thickness greatly magnified.   Now consider 
the speed of propagation of this wave as determined fro m the 
smooth stress-strain curve of Fig.   12. 

The leading edge of the wave, where the strain 
is very small, must propagate with the velocity 

-- -/&öy»0./c (172) 

where the subscript 0 indicates the origin in Fig.   12.    Where 
the strain is higher, the propagation velocity is higher than c . 
Hence by the usual logic a wave that is not initially steep will 
become steeper because the regions of high strain travel 
faster than those of lower strain.    However, there is no physical 
mechanism that will permit the steepening to go on indefinitely. 
The speed of propagation of a small strain into the unstrained 
material is c    and the entire wave can propagate no faster. 

To emphasize this point we will mention that the 
elastic properties of a material are determined by the forces 
between the various atoms and molecules that make it up.    When 
the material is unstrained the molecules are at their equilibrium 
distance apart and a small strain propagates with velocity c . 
Only after the molecules have moved farther apart does the material 
have a higher value of 3 cr/ 9 e    and a MgJier strain velocity.    In 
contrast, if we were dealing with a compression wave rather than 
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a tensile wave, the speed of the wave would not be directly 
determined by the inter molecular force curves.   In a 
compression wave there is no practical limit on the magnitude 
of the force that can be applied to the rear surface of the shock 
by the fully strained material.    The pressure simply builds up 
until the requisite amount of force is applied.    Interatomic 
repulsive forces become very great as a material is compressed 
and so there is no practical limit to the process,  even when the 
particle velocity behind the wave becomes very large.    In a 
tensile wave, on the contrary, a force that is too large will 
simply pull the molecules apart.   After the specimen is ruptured, 
no further work can be done on the unstrained material. 

This situation is reminiscent of what happens in 
a gas, where a compression shock, traveling with a velocity 
greater than that of sound, is possible.   Analogous expansion 
shocks in gases do not exist.    In expansion we find only expansion 
waves, and no propagation velocities exceed the speed of sound. 
The analogy between the behavior of a strain wave and a gaseous 
shock wave is not exact, however, and should be used with care. 

If the arguments given above are correct, no 
tensile strain wave can propagate into a material with a velocity 
greater than c  . The model of a shock wave of height ez traveling 
with velocity   c = "fa- z/f€z   as required by eq (51) and Fig.   12 
becomes untenable because   c>c .    Since a shock wave of height €z 
and velocity c is known to satisfy both continuity and momentum 
conditions (but not energy) do we not make matters worse by 
fixing the velocity at c   ?    We do not, of course, if the forward 
propagation velocity actually is c • 

The problem of the merging of two finite waves, 
one overtaking the other, was treated in the body of this report. 
The stress-strain curve for that problem was two intersecting 
straight lines such as those shown in Fig.  12, and the wave 
heights were £x and eZ"£i respectively, so that each pulse 
propagated as a square wave.    When the second wave overtook 
the first, the propagation velocity of the merged wave abruptly 
changed to a value higher than that of the leading wave and lower 
than that of the overtaking wave.    However, on the basis of the 
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discussion given above, we expect the propagation velocity 
of the merged wave to be the same as that of the leading wave, 
with a sudden change in strain and a sudden change in particle 
velocity originating at the point of overtaking.    In order to 
satisfy the conservation equations, a reflected wave is required. 
This wave, since it travels in strained material, will have the 
higher propagation velocity of the second wave. 

One of the authors (HJH) made several attempts 
to calculate the various waves and show how continuity, momentum, 
and energy conditions could all be satisfied.    He did not get a 
satisfactory solution.    Whether this was due to insufficient mathe- 
matical prowess or whether the problem was not set up in a suit- 
able form is not known.    Most of the assumed solutions that were 
tried out began by assuming waves   of constant amplitude propagat- 
ing in both directions.    It may well be that waves that change in 
amplitude as they propagate away from the point of overtaking are 
required.    Whatever the trouble, there seems to be no reason why 
a solution of the overtaking problem, with the merged wave having 
a propagation velocity of c  , could not be obtained.    This should 
lead to an understanding of what happens when the stress-strain 
curve is a smooth curve, concave upward.      Then comparison 
with experiments could be made. 

Some attempts were made to solve the overtaking 
problem involving two square waves by computer methods.   A 
stress-strain curve consisting of two straight lines was accepted, 
with constants chosen so that the second wave would travel twice 
as fast as the first.    Our thought was that we could plot the results 
and determine the speeds of propagation of both waves, and perhaps 
also those of the advancing and reflected waves formed at the point 
of overtaking.    The attempts were unsuccessful.    Our iterative 
method was able to deal with linear stress-strain curves and with 
curves that were concave downward.    It was able to use a curve 
that was moderately concave upward if the initial strain pulse had a 
gradual rise, presumably because the concavity steepened the pulse 
without making it entirely square.    But the iterative process, when 
vised with a stress-strain curve that was concave upward, seemed 
always to fail when a square pulse was programmed initially and 
also when a strain pulse that rose gradually was sharpened by 
propagation. 
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